| NUMBER
SENSE (NS) | Standard | Core Concepts | Key terms | examples | |----------------------|---|---|---|----------| | MA.6.NS.1 | Read & write whole numbers in scientific notation. | Scientific notation is
written as the product of a
whole number (greater
than or equal to 1 and less
than 10) and of a power of
10. | productpowerscientific notation | | | MA.6.NS.2 | Understand and apply the basic concept of negative numbers (e.g., on a number line, in counting, in temperature, in "owing"). | Negative numbers decrease as they get further from zero. Positive numbers increase as they get further from zero. | • integer | | | MA.6.NS.3 | Interpret the absolute value of a number as the distance from zero on a number line, and find the absolute value of real numbers. | The absolute value is
always positive. | absolute value | | 2017 | NUMBER
SENSE (NS) | Standard | Core Concepts | Key terms | examples | |----------------------|---|---|---|----------| | MA.6.NS.4 | Compare and represent on a number line positive and negative integers | Numbers can be represented on a number line. Positive numbers are found to the right of the zero. Negative numbers are found to the left of the zero. | integers | | | MA.6.NS.5 | Compare and represent on a number line positive and negative fractions and mixed numbers. | A positive proper fraction is a number greater than 0 and less than 1. A negative proper fraction is a number greater than -1 and less than 0. A positive mixed number is found between its whole number and the next consecutive whole number. A negative mixed number is found between its integer and the previous integer. | proper fraction improper fraction mixed number integer whole number | | | NUMBER
SENSE (NS) | Standard | Core Concepts | Key terms | examples | |----------------------|--|---|--|----------| | MA.6.NS.6 | Compare and represent on a number line positive and negative decimals (to the ten thousandths) | Decimals should be compared beginning with the largest place value. Zeros may be added to decimals after the last digit. | place value (to the tenthousandths) rational numbers | | | MA.6.NS.7 | Convert between any two representations of numbers (fractions, mixed numbers, decimals, and percents) without the use of a calculator. | A mixed number is the sum of the whole number and the fractional part. Mixed numbers can be written as improper fractions. Mixed numbers can be split into a whole number and a fraction. | mixed number improper fraction whole number proper fraction | | | MA.6.NS.8 | Recognize decimal equivalents for commonly used fractions without the use of a calculator. | • Commonly used fractions include 1/8, 1/4, 1/3, 1/2, 2/3, 3/4. | • equivalent | | 2017 | NUMBER
SENSE (NS) | Standard | Core Concepts | Key terms | examples | |----------------------|---|---|---|----------| | MA.6.NS.9 | Use models to represent ratios. | A ratio is a comparison of two quantities. Ratios can be written in three forms: word (using "to"), ratio (using a colon), and fraction. | ● ratio | | | MA.6.NS.10 | Find the least common multiple and the greatest common factor of whole numbers. Use them to solve problems with fractions (e.g., to find a common denominator to add up to three fractions and mixed numbers or to find the simplified form for a fraction and mixed number). | Multiples help find common denominators. A multiple is the product of a quantity and an integer. Factors help simplify a fraction. Factors are pairs of numbers that when multiplied together equal the original quantity. When writing an equivalent fraction, however you change the denominator (by multiplication or division) you must do the same to the numerator. | multiplefactor | | | NUMBER
SENSE (NS) | Standard | Core Concepts | Key terms | examples | |----------------------|--|---|--|----------| | MA.6.NS.11 | Understand and compute whole number power of whole numbers. | A power utilizes repeated multiplication. | powerbaseexponent | | | MA.6.NS.12 | Find the prime factorization of whole numbers and write the results using exponents. | A whole number can be
written as the product of
multiple factors. If the
factors are the same, they
may be simplified by using
an exponent. | prime numberfactorexponent | | | COMPUTATION
(C) | Standard | Core Concepts | Key terms | examples | |--------------------|---|---|--|----------| | MA.6.C.1 | Add and subtract positive and negative integers. | Adding like signs results in an integer of the same sign. Adding unlike signs results in an integer of whichever absolute value is greater. Subtracting a quantity is equivalent to adding the opposite amount. | integer absolute value opposite | | | MA.6.C.2 | Multiply and divide positive and negative integers. | Multiplying or dividing like signs results in a positive integer. Multiplying or dividing unlike signs results in a negative integer. | ● integer | | | MA.6.C.3 | Multiply and divide decimals. | | | | | COMPUTATION
(C) | Standard | Core Concepts | Key terms | examples | |--------------------|--|--|---|----------| | MA.6.C.4 | Explain how to add and subtract positive fractions and mixed numbers with common and different denominators, performing the calculations | To add or subtract fractions, you must have common denominators. Mixed numbers can be added or subtracted by computing with the whole numbers and then the fractions. | common denominatormixed number | | | MA.6.C.5 | Explain how to multiply and divide positive fractions and mixed numbers, performing the calculations | When multiplying and
dividing mixed numbers,
they should be changed
into improper fractions
first. | improper fractionmixed number | | | COMPUTATION
(C) | Standard | Core Concepts | Key terms | examples | |--------------------|---|---|----------------------------------|----------| | MA.6.C.6 | Solve problems involving addition, subtraction of positive fractions and mixed numbers, explaining why a particular operation was used for any given situation. | Interpret a story problem
and decide which
operation is appropriate to
be able to solve the
problem. | mixed number | | | MA.6.C.7 | Solve problems involving multiplication and division of positive fractions and mixed numbers, explaining why a particular operation was used for a given situation. | Interpret a story problem
and decide which
operation is appropriate to
be able to solve the
problem. | mixed number | | | MA.6.C.8 | Interpret and use ratios to show
the relative sizes of two
quantities. Use the notations:
a/b, a to b, a:b. | A ratio is a comparison of two quantities. Ratios can be written in three forms: word (using "to"), ratio (using a colon), and fraction. | ● ratio | | | COMPUTATION
(C) | Standard | Core Concepts | Key terms | examples | |--------------------|---|--|---|----------| | MA.6.C.9 | Understand proportions and use them to solve problems. | Two equivalent ratios form
a proportion. | ratioproportion | | | MA.6.C.10 | Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips. | Simple interest formula: <pre>l=prt, where I is the interest earned, p is the principal amount, r is the rate (percent) written as a decimal, and t is the amount of time written in years.</pre> The percent equation can be used with discounts and tips. Percent equation: part = whole x percent (written as a decimal) | percentdiscountinterest | | 2017 | COMPUTATION
(C) | Standard | Core Concepts | Key terms | examples | |--------------------|--|---|---------------------------------------|----------| | MA.6.C.11 | Use estimation to decide whether answers are reasonable to decimal problems. | Decimals can be rounded to
the nearest whole number
(or other place value
depending on the problem). Answers can be compared
to the rounded estimate for
reasonableness. | • rounding | | | MA.6.C.12 | Use mental arithmetic to add or subtract simple fractions and decimals. | When adding different types
of rational numbers, convert
everything to the same type
of number. | rational
number | | | MA.6.C.13 | Add and subtract with money in decimal notation | Adding and subtracting with
money follows the same
rules as adding and
subtracting with regular
decimals. | | | | MA.6.C.14 | Multiply and divide with money in decimal notation | Multiplying and dividing
with money follows the
same rules as multiplying
and dividing with regular
decimals. | | | | ALGEBRA
AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |-------------------------------------|--|--|---|----------| | MA.6.AF.1 | Use correct algebraic terminology such as variable, equation, term, coefficient, inequality, expression, and constant. | Understand these terms in a story problem context. | variable equation term coefficient inequality expression constant | | | ALGEBRA AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |----------------------------------|---|--|--|----------| | MA.6,AF.2 | Write and solve one-step linear equations and inequalities in one variable and check the answers. | Linear equations contain an equal sign and are solved by performing the opposite operation on the variable. Linear inequalities contain a less than, less than or equal to, greater than, or greater than or equal to sign and are solved by performing the opposite operation on the variable. If multiplying or dividing the inequality by a negative number, the inequality sign must be flipped (ex: < would become >) | equation inequality inverse (or opposite) operation | | | MA.6.AF.3 | Write and use formulas with up to three variables to solve problems. | A variable takes the place
of a number. | order of operationsvariableequation | | | ALGEBRA AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |----------------------------------|--|---|---|----------| | MA.6.AF.4 | Interpret and evaluate mathematical expressions that use grouping symbols such as parentheses. | An expression does not contain an equal sign. Order of operations is followed by evaluating all the operations inside grouping symbols first. | order of operationsexpression | | | MA.6.AF.5 | Use parentheses to indicate which operation to perform first when writing expressions containing more than two terms and different operations. | When writing a story
problem as an expression,
words requiring grouping
symbols to be used may
include: sum, difference,
product, quotient. | expression grouping
symbols order of
operations | | | MA.6.AF.6 | Use variables in expressions describing geometric quantities. | Interpret an unknown in a
geometric formula, such as
area, as a variable. | variableexpression | | | ALGEBRA AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |----------------------------------|--|--|---|----------| | MA.6.AF.7 | Apply the correct order of operations and the properties of real numbers (e.g., identity, inverse, commutative, associative, and distributive properties) to evaluate numerical expressions. Justify each step in the process. | Order of operations includes these steps: parenthesis, exponents, multiplication and division, and addition and subtraction. If there are multiple operations within the same step, they should be performed from left to right. Properties of real numbers act like shortcuts to help solve a multiplication or addition problem. | order of operations identity property inverse property commutative property associative property distributive property | | | MA.6.AF.8 | Identify and graph ordered pairs in the four quadrants of the coordinate plane. | Ordered pairs are made up of two coordinates, the x and y. The x-axis is horizontal while the y-axis is vertical. | coordinate planequadrantordered pair | | 2017 | ALGEBRA AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |----------------------------------|---|--|---|----------| | MA.6.AF.9 | Understand that the length of a horizontal line segment on a coordinate plane equals the difference between the x-coordinates and that the length of a vertical line segment on a coordinate plane equals the difference between the y-coordinates. | Distance between two horizontal points is calculated by subtracting the x-coordinates. Distance between two vertical points is calculated by subtracting the y-coordinates. | ordered pair | | | MA.6.AF.10 | Use information taken from a graph or equation to answer questions about a problem situation. | Slope is the change in the y-coordinate divided by the change in the x-coordinate. The slant of a line represents the slope. | slope | | | MA.6.AF.11 | Solve the problems involving linear functions with integer values. Write the equation and graph the resulting ordered pairs of integers on a grid. | The solution to a linear equation containing the variables x and y, is the resulting line on a coordinate plane. All points located on a line are considered solutions to the equation. | slope intercept function ordered pair coordinat e plane | | | ALGEBRA AND
FUNCTIONS
(AF) | Standard | Core Concepts | Key terms | examples | |----------------------------------|--|--|---|----------| | MA.6.AF.12 | Investigate how a change in one variable relates to a change in a second variable. | There are four types of changes: positive, when the x-variable increases so does the y-variable. negative, when the x-increases, y- decreases. zero, when the x-increases, y- stays the same. undefined, when the x-stays the same, y-increases. | slopecoordinate plane | | | GEOMETRY
(G) | Standard | Core Concepts | Key terms | examples | |-----------------|--|---|--|----------| | MA.6.G.1 | Identify and draw vertical, adjacent, complementary, and supplementary angles and describe these angle relationships. | Recognize different types
of angle pairs. | vertical angles adjacent angles complementary
angles supplementary
angles | | | MA.6.G.2 | Use the properties of complementary, supplementary, and vertical angles to solve problems involving an unknown angle. Justify solutions. | Complementary angles add
up to 90 degrees. Supplementary angles add
up to 180 degrees. Vertical angles are
equivalent. | complementary angles supplementary angles vertical angles | | | MA.6.G.3 | Draw quadrilaterals and triangles from given information about them. | Quadrilaterals may include
a square, rectangle,
rhombus, trapezoid, or
parallelogram. Triangles may include an
equilateral, isosceles, a
scalene, obtuse, right, or
any combination. | | | | GEOMETRY
(G) | Standard | Core Concepts | Key terms | examples | |-----------------|--|--|--|----------| | MA.6.G.4 | Understand that the sum of the interior angles of any triangle is 180□< and that the sum of the interior angles of any quadrilateral is 360□<. Use this information to solve problems. | Interior angles are the angles inside of a closed figure. Missing angles can be calculated by taking the sum of the known angles and subtracting from the total sum of the interior angles (180 or 360, depending). | ● interior angles | | | MA.6.G.5 | Identify and draw two-dimensional shapes that are similar. | Similar figures are the same
shape but different sizes. | similar figures | | | MA.6.G.6 | Draw the translation (slide) and reflection (flip) of shapes. | Translations move every point of a figure the same distance in the same direction. Reflections move each point of a figure equidistant on either side of the line of reflection. | transformations translation reflection line of reflection | | 2017 | MEASUREMENT (M) | Standard | Core Concepts | Key terms | examples | |-----------------|---|--|---|----------| | MA.6.M.1 | Select and apply appropriate standard units and tools to measure length, area, volume, weight, time, temperature, and the size of angles. | Different tools are used
depending on whether
customary or metric units
are being measured.
Understand both. | customary unitsmetric units | | | MA.6.M.2 | Understand and use larger units for measuring length by comparing miles to yards and kilometers to meters. | 1 mile = 1,760 yards. 1 kilometer = 1,000 meters. | customary unitsmetric units | | | MA.6.M.3 | Understand and use larger units for measuring area by comparing acres and square miles to square yards and square kilometers to square meters. | 1 square mile = 640 acres. 1 square mile = 3,097,600 (1760 x 1760) square yards. 1 square kilometer = 1,000,000 (1000 x 1000) square meters. | | | | MA.6.M.4 | Understand the concept of the constant $f\hat{l}$ as the ratio of the circumference to the diameter of a circle. Develop and use the formulas for the circumference and area of a circle. | Circumference of a circle is equivalent to pi times the diameter. Pi is equivalent to the circumference divided by the diameter. | circumferencediameterpi | | 2017 | MEASUREMENT (M) | Standard | Core Concepts | Key terms | examples | |-----------------|---|--|---|----------| | MA.6.M.5 | Know common estimates of $f\hat{I}$ (3.14, 722) and use these values to estimate and calculate the circumference and the area of circles. Compare with actual measurements. | Pi is an irrational number because its decimal goes on forever without repeating. We use estimations when calculating with pi. | rational numberirrational number | | | MA.6.M.6 | Construct a cube and rectangular box from two-dimensional patterns and use these patterns to compute the surface area of these objects. | Surface area is the sum of
all the areas of the faces on
a 3D figure. | netareasurface area | | | MA.6.M.7 | Use strategies to find the surface area and volume of rectangular solids, right prisms and cylinders using appropriate units. | Surface area is the sum of all the areas of the faces on a 3D figure. When a cylinder is unrolled, the resulting figure is a rectangle. Volume of any right prism or cylinder can be calculated by multiplying the area of the base by the height of the figure. | areasurface areavolume | | | MEASUREMENT (M) | Standard | Core Concepts | Key terms | examples | |-----------------|---|--|--|----------| | MA.6.M.8 | Use a formula to convert temperatures between Celsius and Fahrenheit. | C = (F - 32) x 5/9 F = (C x 9/5) + 32 Where C represents degrees Celsius and F represents degrees Fahrenheit. | CelsiusFahrenheit | | | DATA ANALYSIS AND PROBABILITY (DP) | Standard | Core Concepts | Key terms | examples | |------------------------------------|--|--|---|----------| | MA.6.DP.1 | Organize and display single-
variable data in appropriate graphs
and stem-and-leaf plots, and
explain which types of graphs are
appropriate for various data sets. | Circle graphs are useful when comparing parts to a whole. Bar graphs are useful to compare categories. Line graphs are used to look at data over time. Stem-and-leaf plots are useful when comparing and ordering numerical data. | circle graph line graph bar graph stem-and-leaf plot | | | DATA ANALYSIS AND PROBABILITY (DP) | Standard | Core Concepts | Key terms | examples | |------------------------------------|---|--|---|----------| | MA.6.DP.2 | Make frequency tables for numerical data, grouping the data in different ways to investigate how different groupings describe the data. Understand and find relative and cumulative frequency for a data set. Use histograms of the data and of the relative frequency distribution, and a broken line graph for cumulative frequency, to interpret the data. | A frequency table is used to group data by how often a certain category occurs. Histograms are a visual display of frequency tables. A broken scale represents a large gap between data. | frequency table relative frequency cumulative frequency histogram broken line graph | | | MA.6.DP.3 | Compare the mean, median, and mode for a set of data and explain which measure is most appropriate in a given context. | Measures of central tendency are used to get a general sense of the data. Some measures are better than others for explaining data depending on the situation. | measures of central tendency mean median mode | | 2017 | DATA ANALYSIS AND PROBABILITY (DP) | Standard | Core Concepts | Key terms | examples | |------------------------------------|---|--|--|----------| | MA.6.DP.4 | Show all possible outcomes for compound events in an organized way and find the theoretical probability of each outcome. | Tree diagrams can be used to display outcomes of compound events. The basic counting principle can be used to determine how many outcomes there are. | compound events theoretical probability basic counting principal | | | MA.6.DP.5 | Use data to estimate the probability of future events. | Estimating probability for
future events can be done
by setting up a proportion. | ratioproportion | | | MA.6.DP.6 | Understand and represent probabilities as ratios, measures of relative frequency, decimals between 00 and 1, and percentages between 0 and 100 and verify that the probabilities computed are reasonable. | The greatest likelihood of an event taking place is 100%. Probabilities can be written as equivalent fractions (between 0 and 1), decimals (between 0 and 1), and percents (between 0 and 100). | ratioproportionprobability | |